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The Hard Rod Fluid in 
a Uniform Gravitational Field1 
W. KUNKIN 
Department of Chemistry 
State University of N e w  York at Albany 
Albany, New York 12203 

AbstractThe system of hard rods in an external, uniform gravitational field 
is studied and exact expressions obtained for the partition functions, and the 
one- and two-particle distributions. In principle a11 higher order distributions 
can be exactly expressed as finite sums and the Laplace transforms of the 
one-particle density and pressure for a semi-infinite system are reducible to 
single integrals. Limiting cases of weak field and small rod diameters are 
examined. In the former cave, these results agree with Percus and Lebowitz’s 
local density expansion. In the latter case, corrections to the barometric 
pressure and density laws are obtained. Finally Borne mathematid diflicultiea 
involved in the calculation of the virial expansion and distribution of roots 
of the grand partition function are mentioned. 

1. Introduction 

Relatively few many body problems can be solved exactly and even 
these only under the non-physical assumptions of particles moving in 
one-dimension interacting through nearest neighbor forces. In spite of 
these limitations we present here an exactly solvable model, classical 
hard rods in a uniform gravitational field, which may retain some aspect 
of reality, in that the density-height relationship for a perfect gas is truly 
one-dimensional, and in the present system the hard rods are aligned in 
the direction of the field. 

We calculate the pressure and density functions for this inhomogeneous 
system, and show that the local relation which holds for the perfect gas is 
no longer generally true. In the small hard rod diameter limit one can 
obtain corrections to these “barometric laws”. 
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210 W. KUNKIN 

2, Cdculat,ion of Partition Function 

Consider N particlea on a line L interacting through nearest neighbor 
forces 

N t l  

i . j  - 0 
d = c‘ d ( Z i - 2 , )  

and in an external potential 

N + 1  

i - 1  
u =  p g x i  

The “walls” are two fixed particles a t  x = 0 and x = L (see Fig. 1) 

XO =o *N+I =L  
Figure 1. A system of N perticlea on a line of length L, with two fixed particles 
as walls. 

The partition function Q ( N ,  L) for such a system is 

L 
N + 1  N + l  

Q(N,L)  = Z / . . . / e x p [ - / ?  i,j rd (x i -x j ) ] exp[  = 0 - i - 1  1 b x i ] d z N  
0 

in which the wall potentials have been included in the exponential, with 

If the particlea are ordered (we shall assume 
core) so that 

includes an impenetrable 

0 5 5 2 . .  . 5 XN-1 ZN 5 L 
(2.1) will become, because of the symmetry of the integral: 
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HARD ROD FLUID IN A UNIFORM QRAVlTATIONfi FIELD 211 

Callingf(z) = e-B+(2) we have 

Y N + 1  = L - - z N ;  

so that we can write the Laplace transform (LT)  of Q ( N ,  L) ,  

and 

(2.5a) 

(2.5b) 
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212 W. KUNKIN 

and the many body problem has been reduced to a single integration for 
any nearest neighbor potential. 

When Eq. (2.5) is specialized to hard rods of dirtmeter a: 

@(2) = 0 (z >=a) 

=a (z<a), 

- e- ( b j + S  ) a  
f ( 8 + b j )  = ~ 

so that 

bj +s 
the inversion of the LT is easily performed by integrating over the 
contour shown in Fig. 2. 

- f . . - +  .... + ..-+ .... + 

I m  S 

i 

Re S 

Figure 2. Contour of integration in Eq. (2.5b). 

The result is 
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HAED ROD FLUID IN A UNIFORM GRAVITATIONAL FIELD 213 

3. Calculation of One- and Two-Particle Distribution Functions 

The one-particle distribution n(x)  is given by the canonical average 

that is 

N + l  

i 
x exp ( - Cl bx,) &N 

Now each 6-function creates a wall between left and right hand sides of 
the system so we can write 

N 

j = l  
n(4 = C Q ( j  - 1,4Q(N - j ,  L - X)Q(N, L1-l (3.2) 

In  (3.2) Q ( 0 , x )  = e-B9(z)-bz and Q(0, L -x) = eBO(L-z)-bL. Since Q(j  - 1 , x )  
is obtained from (2.6) with the replacement N + j - 1 ,  L - t x  and 
Q(N - j ,  L - x) is similarly obtained by N -+ N - j ,  L --f L - x (except that 
it contains an extra factor e-bz(h’-j+l) due to the asymmetry of left and 
right hand sides of the system when expressed in difference coordinatee), 
we will have 

in the region a < x < L -a (it is of course zero elsewhere). The prime 
indicates that within the sum take x >ju.  
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2 1 4  W. KUNKW 

We shall be interested mainly in the semi-hite system, approached as 
L+m, with N large, but fixed. In that limit 

(3.4) 
We record, for future reference, the LT of n ( x ) :  

The two-particle distribution, n2(x,  y), or the canonical average 

is calculated in a similar fashion. If the ith particle is at  x and the 
i + j th a t  y, y > x, 

N N  

i - 1  j - 1  
n&,y) = c' &(i- l ,x )Q(j - l ,y -xK?(N-i - j ,L-y)  Q(N,L)-' 

(3.6) 
with the sums subject to i + j < N 

The result in the large L limit is: 

e-b(v-z-ja) (N-i-j+l)(l -e-b(z-fa))i-l(l -e-b(r-z-ja) ).- 9 1 (3.7) 

h i d e  the sum we take x 2 ia and y -x 2 j u .  
It is easy to calculate higher distributions by the same method. 

4. Limiting Cases; Corrections to Barometric Density and Pressure 
If we look at  (3.3), which gives the one-particle distribution (density) 

for the finite system, we see that the initial density, i.e. a t  x = a is 
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HARD ROD FLUID IN A UNIFORM GRAVITATIONAL FIELD 215 

which shows a volume exclusion term compared to the perfect gss. But 
in general (3.3) is not easily compared either to a free system or to a 
uniform hard rod fluid. We examine instead limiting cam, where either 
a, the hard rod diameter, or 6, the external field strength is small. 

If we have a nearly uniform fluid perturbed by a very weak gravitational 
field, we may approximate n(z) by expanding (3.1) directly in powers of b: 

n(x) = nO(z) - bmO(z) - 6 1 I-" [3@, Y) - n0(s)n0(y)1y dY + O(b7 

(a < x < L - a )  (4.1) 

in which the "O" denotes pure hard rod distributions. Let us choose, 
N, L very large with NIL = p (uniform density), and with x far from both 
walls (z % 0, x Q L). Then (4.1) simplifies to 

or defining Q(x)n = n(z) - p, 
Q 

U(z) = - pbx - 2p%z j hO(y) dy + O(6Z) (4.3) 
0 

with h(z) = g(z) - 1. 

Equation (4.3) has a rather limited region of validity, for the density 
becomes negative when x is sufficiently large. On the other hand x mu& 
be much larger than 0 if the effect of the wall particle on the density is 
to be neglected. 

Interestingly, Eq. (4.3) results as well from the local density expansion 
of Lebowitz and Percus.(l) Using the grand cahonical ensemble, they h d ,  
when the external field causes only slight inhomogeneities in the fluid, 

p = V ( 4  +CL0(n(4 ) (4.4) 

where p is the chemical potential of a system subject to an external 
potential U ( x )  and po(n(z) ) is the chemical potential of a uniform system 
which has constant density n(z), (and is thus a function of 2). Rewriting 
(4.4) in t e rn  of Q(z) which we assume to be 4 p and expanding through 
the term linear in Q(z) we have: 
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216 W. KUNKIN 

l S  
a p O  - ap 
a P  a P  B 

p- - - = - (1 + p  hO(z)&)-’ 

we have 

which agrees with (4.3) for gravitational potentials. It is curious that the 
Lebowitz-Percus expansion, which is much more useful in obtaining the 
asymptotic form of the uniform pair distribution than an expansion of 
the density in the potential, should simply reproduce the latter here. 

More interesting is the limit of a non-uniform fluid of very small hard 
rods, i.e. the dimensionleas constant ba is very small. From (3.4) or more 
simply from ( 3 3 ,  we obtain in this limit (also L-tco), 

n(z) = N b e - b Z  + [N%-bZ - 2 N ( N  - l ) & - y b a  + O((ba)Z) (5 > 0 )  

(4.7) 
giving a first-order correction to the barometric density law. 

The pressure of our system hes two parts: a “kinetic” pressure which 
arises from the momentum transferred per unit time across a small 
d a c e  S perpendicular to the line (0, L)  at 2, and a “potential” p r e m  
arising from the forces acting across this surface due to particles momen- 
tarily on opposite sides of it. The first of these, P,(z) ,  is calculated as 
follows. The number of molecules crossing AS’ a t  x with momentum p is 
n(z,p)&dp.  The total momentum transferred in unit time, allowing 
all possible values of p is then 

4x9 P)P=dP 
-rn 

but since the momentum distribution is Maxwellian, the integration can 

The potential premure, P,(z), or total force across S we find as follows. 
(See figure 3.) The force on particles near y due to a particle a t  z is 

0 S L 
Figure 3. Distances for calculation of potential pressure. 
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- n ( y  I z) d/dy $(y - z )  dy, where n(y I z )  is the (conditional) density a t  y in 
the presence of a particle at z, and is equal to n2(z, y)/n(z).  Since there are 
n(z) dz particles near z, the total force across 8, and hence P ,  , is 

This vanishes a t  x = a, and x = L - a  so the wall particles do not con- 
tribute directly, but only through the pair distribution. When $ is the 
hard rod potential, i t  is m y  to see that while n,(z ,y)  vanishes when 
y - 2  = a, e+flb(w-Z)n,(z,y) =f(z ,  y) is continuous a t  y - 2  = a just as i t  is 
for a uniform system. Thus, 

= J- 1 L-a f ( Z ,  y)S(y - z - a )  dydz 
1: 

J - ~ n , ( z , z + a ) d z  (a < z  <2a)  

n,(z ,z+a)dz (2a < z < L - 2 a )  
x-a 

JL-kn,(z,z+u)& (L-2a <z< L - a )  (4.10) 
z-a 

The derivation of the “potential” pressure given here avoids the 
approximation which is made in the usual derivation via the s t r w  tensor. 
AB a check on the correctness of (4.10) let x be far from the walls and 
remove the external potential. The pair distribution now depends only 
on the difference of its arguments and the correct uniform value, ap2g(u) 
results. 

Returning to the pressure calculation, the total pressure 

is obtained by adding (4.8) and (4.10). Taking the Laplace Transform in 
the large L limit, 

1 rn 

a 5 
BP(5) = p s  e - z sP(z )dz  = %(s) + - (1 -e-a8));i.1(8) (4.11) 
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where 

W. KUNgIN 

This integral is similar in form to the density integral (3.5). To Bee this 
we employ (3.7), 

'?&2(Z, Z +a) = b2iN - e-b(z-ia) (N-i+l) (1 - e-b(z-ia))i-l (4.12) 
N - l  i = l  ( i ) 

so that 

k(8) = bN(N - l)e-"* (y + (1 -y)e-as)N-2y8/b+1 dy (4.13) 

Equation (4.11) with (3.5) and (4.13) is the exact pressure for any size 
hard rods. 

Initially, at z = a we have /3P(a) = n(a), but to characterize the 
pressure further we will proceed as we did with the density and examine 
the limit in which ha is small. In this limit the second term on the right 
in (4.11) becomes 

Inverting, and employing (4.7) 

~ P ( z )  = Nbe-bz + [ ~ Y ~ b e - ~ "  - N ( N  - I)be-Zbz]ba + O ( ( ~ U ) ~ )  (Z > 0)  (4.14) 

The bracketted term is positive showing the preasure increase due to the 
repuleive cores. Equations (4.7) and (4.14) are corrections to the familiar 
barometric density and pressure laws. 

5. Discussion 

We would like to indicate two directions for further study on this model 
and the mathematical difficulties encountered. First, we should be able 
to obtain an expansion for the logarithm of the grand partition function 
in powers of the activity z (z = eb'h) in which the "virial coefficients" are 
modifications of the reducible cluster integrals found in the theory of 
homogeneous imperfect gases.(s) These coefficients are explicitly known 
for pure hard rode,(') 

bi = ( -d)'-'/l!. 
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Seoond, i t  would be of interest to study the distribution of zeros of the 
grand partition function in the complex z plane (or a t  least the limiting 
distribution, as L+ 03). Again, this problem has been mlved for pure 
hard rods.(6) The author knows of no example of either for an inhomo- 
geneous cont,inuum fluid. We indicate an approach to these queations. 
The grand partition function for the present system is 

Talung L/a = 211, to be the integer N,,  we can rewrite (5.1) using the 
Cauchy integral theorem, 

The closed curve C encircles the origin in the complex h plane. Further 
progress on either of the questions mentioned above depende on perform- 
ing the Bum in (5.2) which, 80 far, the author haa been unable to do. 
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